

* * * * *

カナダビーフ

生涯にわたって健康とウェルネスに貢献し、 身体に様々な恩恵をもたらす栄養のスーパー スターです。また、世界中の多くの家庭で食され ている主食でもあります。

これは教育のみを目的としています。これは医学的なアドバイスではありません。必ず医師の指示に従ってください。

カナダビーフ: 栄養豊富でカロリー 控えめ

調理したカナダビーフ1人分100グラム(手のひらほどのサイ ズ) は、わずか250キロカロリーしかなく、なんと35グラムのタン パク質をはじめ、さまざまな栄養素がたっぷり含まれています。

タンパク質 35g チアミン 0.075mg コリン 70mg リボフラビン 0.3mg

マグネシウム 25mg ビタミン B6 0.25mg

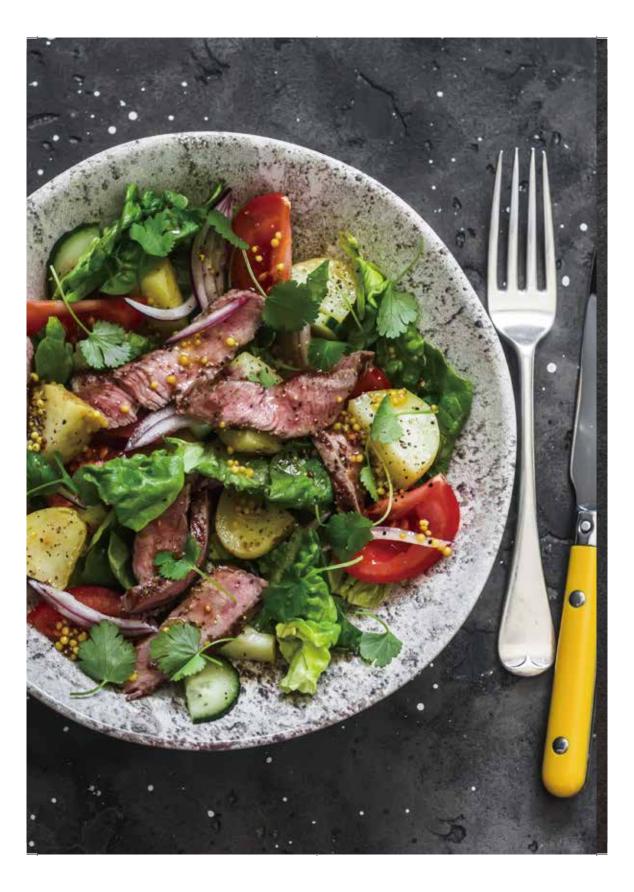
亜鉛 8.5mg セレン 29mg ナイアシン 12.5mg **会大 3.5mg**

パントテン酸 1mg

銅 0.09mg

カリウム 300mg

カナダ保健省の栄養素データ。カナダ栄養素ファイル(2015年)、食品コード6172。


 \star \star \star \star

ビーフは無添加 充填剤、 結着剤、 着色料、 保存料、 水を加えていません。

牛肉は次の栄養素を補給します。

- ✓ 妊娠・授乳期、幼少期、思春期、高齢期など重要なライフステージでは特に 重要です。¹
- ✓ 植物性食品では摂取が難しい、または含まれていないことが多い、完全なたんぱく質、ビタミンB12、吸収されやすい鉄や亜鉛などが含まれています。
- ✓ 鉄、亜鉛、ビタミンB12など、世界中の食生活で不足しがちな栄養素。²

* * * * *

栄養豊富

10 の方法 ビーフの栄養素は健康 と活力をサポート

植物性タンパク質と 動物性タンパク質 どちらがよいのか?

動物性食品は「完全タンパク質」食品であり、私たちの体が正常に機能するために必要なすべての必須アミノ酸を含んでいます。一方、ほとんどの植物性タンパク質食品は「不完全」であり、必要なアミノ酸をすべて満たすためには、組み合わせて摂取する必要があります。

多くの人は、植物性食品をもっと食べることで食生活を改善することができます。しかし、特にカナダ産ビーフのようなタンパク質が豊富な動物性食品には、私たちの食生活に不足しがちで植物からは摂取しにくい栄養素が豊富に含まれているため、動物性食品を減らし過ぎるのは望ましくありません。

牛肉と植物性食品のタンパク質を比べてみましょう。同じ量 (35g) のタンパク質を摂取するためには、これらの食品をどれくらい食べる必要があるかをご覧ください。

出典:カナダ保健省カナダ栄養素ファイル(2015年)、食品コード:6172、2534、6289、4870、3377。 *1人分の量は食品基準量表に基づいており、栄養価はカナダの栄養表示規則に従って四捨五入されています。

脳を意識して 食べる

牛肉はタンパク質のほか、鉄、セレン、ビタミンB12、ビタミンB6、亜鉛など、 脳の健康をサポートするさまざまな栄養素を含んでいます。3-5

タンパク質と脳の健康の関係

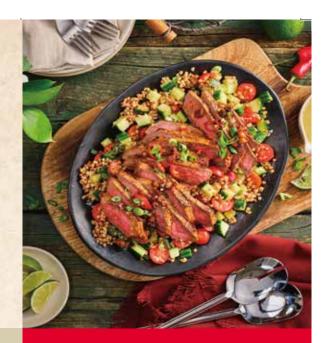
タンパク質は筋肉のためだけのものだと思っているなら、もう一度考えみてください。タンパク質は脳の健康にも欠かせません。だからこそ、十分なタンパク質を食事から摂ることが大切なのです。

体は次の目的でタンパク質を必要としています。

- ・ 脳と神経組織を構築・維持するため
- 気分、集中力、記憶力に影響を与える脳内化学物質を作るため

脳は、体の他の部分と同様に、健康で最高の機能を維持するために、さまざまな栄養素を必要としています。

しかし、世界の多くの国では、砂糖入り飲料、焼き菓子、塩分の多いスナック菓子など、高度に加工された食品の摂取量が増加しています。6これらの食品は、慢性疾患のリスクを高めるとされており、7脳の健康に重要な栄養素が不足していることが多いのです。



 \star \star \star \star

研究によると、肉に含まれるいくつかの栄養素(鉄、亜鉛、クレアチンなど)は、**うつ病のリスクの低下と**関連していることが示唆されています。^{8,9}

鉄分不足は、世界で最も一般的な 栄養不足のひとつです。¹⁰ 鉄分は、 私たちが生きていくうえで欠かせな いミネラルです。

肉、魚、鶏肉などは「ヘム鉄」を含んでおり、これは体に最も吸収されやすい形の鉄分です。一方で、卵、豆腐、葉物野菜、ドライフルーツ、豆類、穀類などには鉄分が含まれていますが、これらは「非ヘム鉄」と呼ばれ、体への吸収効率があまり良くありません。

知っておくとよいこと

鉄分は、特に妊娠期、乳児期、幼 少期などの特定のライフステー ジにおいて非常に重要です。

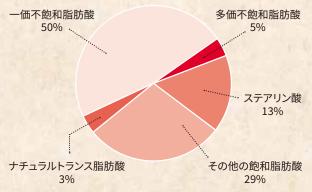
乳児期や幼少期における鉄分不足は、脳の発達や機能に回復不可能な影響を及ぼす可能性があります。11 牛肉は、鉄分を豊富に含むため、世界保健機関(WHO)は、赤ちゃんの最初の離乳食として牛肉を推奨しています。12

鉄分不足を 補う

食の相乗効果のパワー

植物性食品や卵に含まれる鉄は吸収率が低いため、ベジタリアンは肉を定期的に食べる人の約2倍 (1.8 ft) の鉄を摂取する必要があるとされています。 13 食事に肉、魚、鶏肉を加えることで、非ヘム鉄の吸収率が150% 以上アップすることが分かっています。 14

風味豊か


年齢を重ねるにつれて必要なカロリーは減っていきますが、タンパク質の必要量は高いままです。 タンパク質が豊富な牛肉は、少ない量でしっかりとタンパク質を摂取できるため、高齢者にとって特に有益です。

- 筋肉や骨の減少は30代から始まり、65歳を過ぎると加速しますが、運動とタンパク質をしっかりと摂る健康的な食事でその進行を遅らせることができます。16
- 高齢者は、すべての食事や間食にタンパク質の多い食品を取り入れることが、筋力維持に効果的です。 17

しっかりと食べる。 健康に歳を重ねる。

カナダビーフの脂肪酸プロファイル

出典:カナダ保健省カナダ栄養素ファイル(2015年)、食品コード6172。

赤身肉を多く 食べる人ほど 野菜を多く食 べる傾向があ るという調査 結果も示唆さ れています。¹⁸

考慮すべき脂肪の事実

私たちはよく忘れがちですが、脂肪は体にとって必要不可欠な栄養素であり、ホルモンの生成や他の食品から脂溶性ビタミン(A、D、E、K)の吸収を助ける役割を果たしています。脂肪を含む他の多くの食品とは異なり、牛肉は、目に見える脂肪を切り落としたり、調理後に脂肪を取り除いたりすることで、脂肪の量を減らすことができます。

よりスマートな脂肪管理の方法

多くの人にとって、脂肪の摂取量を管理する上で、牛肉、卵、チーズなどの栄養 価の高いホールフードを避けるよりも、ファーストフード、甘い焼き菓子、その 他の高度に加工された食品を控える方が効果的です。

参考文献

- FAO. 2023. Contribution of terrestrial animal source food to healthy diets for improved nutrition and health outcomes.
- 2. Beal T and Ortenzi F. Priority micronutrient density in foods. Front Nutr. 2022;9:806566.
- Yosaee S et al. Zinc in depression: From development to treatment: A comparative/dose response
 meta-analysis of observational studies and randomized controlled trials. Gen Hosp Psychiatry. 2022
 Jan-Feb:74:110-117.
- 4. Dobersek U et al. Meat and mental health: a systematic review of meat abstention and depression, anxiety, and related phenomena. Crit Rev Food Sci Nutr. 2021;61(4):622-635.
- Dobersek U et al. Meat and mental health: A meta-analysis of meat consumption, depression, and anxiety. Crit Rev Food Sci Nutr. 2023;63(19):3556-3573.
- World Obesity Federation 2024. Ultra-processed foods are pushing aside all other food groups to dominate global diets. World Obesity.
- Bhave VM et al. Associations Between Ultra-Processed Food Consumption and Adverse Brain Health Outcomes. Neurology. 2024 Jun 11;102(11):e209432.
- 8. Chen TT et al. Causal influence of dietary habits on the risk of major depressive disorder: A diet-wide Mendelian randomization analysis. J Affect Disord. 2022;319:482-489.
- Bakian AV et al. Dietary creatine intake and depression risk among U.S. adults. Transl Psychiatry. 2020. 3;10(1):52.
- World Health Organization. 2021. Iron Deficiency Anaemia Assessment, Prevention, and Control: A guide for programme managers.
- 11. World Health Organization. 2020. WHO guidance helps detect iron deficiency and protect brain development.
- 12. World Health Organization. 2023. WHO Guideline for complementary feeding of infants and young children 6–23 months of age.
- Institute of Medicine. 2001. Dietary Reference Intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington, DC: The National Academies Press.
- 14. Engelmann MD et al. The influence of meat on nonheme iron absorption in infants. Pediatr Res. 1998 Jun;43(6):768-773.
- 15. You W et al. Total meat intake is associated with life expectancy: A cross-sectional data analysis of 175 contemporary populations. Int J Gen Med. 2022;15:1833-1851.
- 16. Volpi E et al. Muscle tissue changes with aging. Curr Opin Clin Nutr Metab Care. 2004 Jul;7(4):405-410.
- Hengeveld LM et al. Prospective associations of protein intake parameters with muscle strength and physical performance in community-dwelling older men and women from the Quebec NuAge cohort. Am J Clin Nutr. 2021 Apr 6;113(4):972-983.
- 18. Kappeler R et al. Meat consumption and diet quality and mortality in NHANES III. Eur J Clin Nutr. 2013;67(6):598-606.

